GERHARD GEISELER und EBERHARD PILZ¹⁾ Zur Kenntnis der Dipolmomente homologer α-Olefine

Aus dem Physikalisch-Chemischen Institut der Universität Leipzig und der Organischen Abteilung der Leuna-Werke (Eingegangen am 15. Juni 1961)

Die Dipolmomente der α-Olefine Hexen-(1) bis Dodecen-(1) und Hexadecen-(1) wurden nach der Methode von DEBYE-CLAUSIUS-MOSOTTI (DCM) ermittelt. Sie zeigen in Abhängigkeit von der C-Zahl einen deutlichen Alternierungseffekt, der mit zunehmender Kettenlänge immer kleiner wird und ab C₁₂ einem Grenzwert zustrebt. Fragen des möglichen Zusammenhanges zwischen diesem alternierenden Verhalten und der Molekelstruktur werden diskutiert.

Im Zusammenhang mit Untersuchungen über Alkylierungsreaktionen²⁾ interessierte der Einfluß der Kettenlänge auf die Dipolmomente der α -Olefine. Die Angaben ältererArbeiten³⁾ sind insofern mit Vorsicht zu werten, als nicht sicher ist, ob diese Olefine infolge möglicher Doppelbindungsisomerisierung bei ihrer Synthese nicht doch Isomere mit weiter innenständiger Doppelbindung enthielten oder gar Isomerengemische darstellten. Die Momente der niederen gasförmigen Glieder Äthylen, Propylen und α -Butylen wurden von SMYTH und Mitarbb.^{3.4)} aus der Temperaturabhängigkeit der Molpolarisation bestimmt. Aus der hierbei erhaltenen Verschiebungspolarisation und der aus refraktometrischen Messungen gewonnenen Elektronenpolarisation konnte die Atompolarisation (Ultrarotglied) ermittelt werden. Sie beträgt für Äthylen 0.3, für Propylen 0.4 und für α -Butylen 0.5 cm³/Mol⁵).

DARSTELLUNG DER OLEFINE

Die α -Olefine wurden nach der Allylbromidmethode⁶⁾ hergestellt. Sie ist präparativ einfach zu handhaben und führt, wie infrarotspektroskopische Untersuchungen ge-

01-6-	Sdp		.001	20	
Olenn	°C	Torr	<i>a</i> .	np	
Hexen-(1)	63.5-64.0	760	0.6764	1.3879	
Hepten-(1)	93.8-94.0	760	0.6993	1.3998	
Octen-(1)	61.5-61.7	100	0.7147	1.4088	
Nonen-(1)	84.2-84.3	100	0.7297	1.4157	
Decen-(1)	67.7 - 67.8	20	0.7401	1.4214	
Undecen-(1)	72.1-72.2	10	0.7497	1.4260	
Dodecen-(1)	88.8-88.9	10	0.7588	1.4298	
Hexadecen-(1)	155	16	0.7811	1.4411	

Tab. 1. Physikalische Eigenschaften der a-Olefine

1) Teil der Dissertat. E. PILZ, Univ. Leipzig 1960.

²⁾ F. ASINGER, G. GEISELER und W. BEETZ, Chem. Ber. 92, 755 [1959].

³⁾ C. P. SMYTH und C. T. ZAHN, J. Amer. chem. Soc. 47, 2501 [1925]; C. P. SMYTH, ebenda 51, 2380 [1929].

4) R. B. MCALPINE und C. T. ZAHN, J. Amer. chem. Soc. 55, 459 [1933].

⁵⁾ K.L. WOLF und O. FUCHs in Handbuch d. chem. Physik, Bd. 6, I, Akademische Verlagsgesellschaft, Leipzig 1935.

⁶⁾ H. SEIFERT, Mh. Chem. 79, 198 [1948].

zeigt haben, zu eindeutigen Verbindungen mit endständiger Doppelbindung. Sie konnten durch Rektifikation über eine hochwirksame Vakuumkolonne sehr rein erhalten werden. Die für die Dipolmessungen benutzten, konstant siedenden Fraktionen waren durch die in Tab. 1 aufgeführten Kennzahlen charakterisiert.

BESTIMMUNG DER DIPOLMOMENTE

Die Bestimmung der Dipolmomente erfolgte nach der DCM-Methode (DEBVE-CLAUSIUS-MOSOTTI)⁷⁾ aus Messungen der Dielektrizitätskonstante, des Brechungsindex und der Dichte verschieden konzentrierter benzolischer Lösungen bei 20°C. Der Auswertung lag die bekannte Gleichung zugrunde:

$$\mu = \frac{3}{2} \sqrt{\frac{k}{\pi N_{\rm L}}} \sqrt{(P - P_{\rm E} - P_{\rm A})T} = 0.0128_1 \sqrt{(P - P_{\rm E} - P_{\rm A})T}$$

Hierin bedeuten: μ das Dipolmoment, k die BOLTZMANNSche Konstante, N_L die Loschmidtsche Zahl, P die Gesamtpolarisation, P_E die Elektronenpolarisation und P_A die Atompolarisation.

Die Gesamtpolarisation wurde wegen der starken Konzentrationsabhängigkeit der aus den Meßdaten erhaltenen Einzelwerte durch graphische Extrapolation auf unendliche Verdünnung $(x_2 \rightarrow 0)$ gewonnen. Die rechnerische Ermittlung nach dem Verfahren von G. HEDESTRAND⁸⁾ führte zu vergleichbaren Zahlen. Zur Bestimmung der Elektronenpolarisation wurden für die verschiedenen Lösungen die Brechungsindices mit monochromatischem Licht der Linien C(H) 6563, D(Na) 5893, F(H) 4861 und G' (H) 4340 Å gemessen und daraus mit Hilfe der HARTMANNschen Dispersionsnetze⁹⁾ die Brechungsindices bei unendlich großer Wellenlänge ($\lambda = \infty$) ermittelt. Die Elektronenpolarisation wurde schließlich in gleicher Weise wie die Gesamtpolarisation durch graphische Extrapolation erhalten ($P_{E_2} = R_{2\infty}$).

Auf Grund der bekannten Atompolarisation der Anfangsglieder der homologen α -Olefine sind, wie eingangs erwähnt, Rückschlüsse auf die Größe der Ultrarotglieder der höhermolekularen Vertreter der Reihe möglich. Es kann mit großer Wahrscheinlichkeit angenommen werden, daß ihre Werte mit wachsender Kette um ~0.1 cm³ pro CH₂-Gruppe zunehmen. Somit ergibt sich für die Atompolarisation der Homologen:

$$P_{A(n)} = 0.1 (n + 1)$$
 n = C-Zahl

Die P_A -Werte von Äthylen, Propylen und α -Butylen nach SMYTH und Mitarbb.³⁾ sowie nach Wolf und Fuchs⁵⁾ unterscheiden sich um 50% voneinander, so daß für die Atompolarisation der α -Olefine C₆ bis C₁₆ eine mittlere Ungenauigkeit von $\pm 50\%$ in Rechnung zu stellen ist. Obgleich dieser Fehler relativ groß ist, wirkt er sich auf die Dipolmomente nur sehr wenig aus, da die Atompolarisation, absolut betrachtet, klein gegenüber der Elektronenpolarisation ist und nur etwa 2-3% beträgt. Die so abgeschätzten Werte für die Ultrarotglieder erscheinen vertrauenswürdiger als ihre Festlegung auf 15% der Elektronenpolarisation.

⁷⁾ P. DEBYE, Polare Molekeln, S. Hirzel Verlag, Leipzig 1929.

⁸⁾ Z. physik. Chem., Abt. B 2, 428 [1929].

⁹⁾ O. FUCHS und K. L. WOLF, Z. Physik 46, 506 [1928]; O. FUCHS, ebenda 46, 519 [1928];

C. P. SMYTH und W. N. STOOPS, J. Amer. chem. Soc. 50, 1884 [1928].

ERGEBNISSE

In Tab. 2 sind die Versuchsergebnisse zusammengestellt. Die Messungen wurden bei 20 \pm 0.05°C vorgenommen.

Tab. 2. Meßergebnisse							
$x_2 = \operatorname{Molenbrue}_{(\lambda \to \infty)}$	ch des Olefins, ε ₁₂) der Lösungen, P	Dielektrizitätsl 2 Gesamtpolari	constante, d_{12} sation, P_{E_2} Elements	Dichte, n ₁₂ Brec ektronenpolarisati	hungsindex ion		
1. Hexen-(1)							
<i>x</i> ₂	£12	d ₁₂	P ₂	n ₁₂	P_{E_2}		
0.00424	2.2827	0.8716	45.06	1.4897	38.98		
0.00743	2.2816	0.8754	38,80	1.4891	33.29		
0.0110	2.2788	0.8730	38.60	1.4877	32.38		
0.0300	2.2753	0.8695	34.16	1.4860	30.25		
0.0431	2.2719	0.8664	33.57	1.4842	29.75		
	$_{0}P_{2} = 51.56$	$_{0}P_{E_{2}} = 45.72$	$\mu = 0.46 \pm$	0.03 D			
2. Hepten-(1)							
x ₂	E12	d ₁₂	P_2	n ₁₂	P _E ,		
0.00463	2 2920	0.9761	<u> </u>	1 4906	42.96		
0.00403	2.2020	0.6701	30.90	1.4090	42.00		
0.00757	2.2813	0.8753	40.29	1.4893	39.81		
0.0241	2.2773	0.8/0/	40.81	1.4863	34.70		
0.0376	2.2/28	0.8670	39.51	1.4843	34.42		
0.0613	2.2696	0.8604	39.81	1.4805	34.03		
	$_{0}P_{2} = 57.82$	$_{0}P_{\rm E_{2}} = 48.80$	$\mu=0.63~\pm$	0.02 D			
3. Octen-(1)							
<i>x</i> ₂	£12	d ₁₂	P ₂	n ₁₂	P_{E_2}		
0.00407	2.2798	0.8755	58.61	1.4894	57.46		
0.00720	2.2791	0.8748	52.12	1.4887	47.78		
0.0104	2.2775	0.8738	48.19	1.4878	43.03		
0.0169	2.2753	0.8720	45.70	1.4871	42.00		
0.0344	2.2694	0.8671	43.72	1.4842	39.78		
	$_{0}P_{2} = 67.26$	$_{0}P_{\rm E_{2}} = 62.78$	$\mu = 0.42 \pm$	0.02 D	57.70		
4 Nonen-(1)							
x ₂	E12	d12	P ₂	112	PE		
	2 2920						
0.00355	2.2820	0.8/60	63.04	1.4897	55.26		
0.00017	2.2815	0.8752	57.42	1.4889	51.66		
0.00927	2.2802	0.8743	53.69	1.4883	48.65		
0.0169	2.2775	0.8719	50.82	1.4873	45.10		
0.0305	2.2733	0.8677	45.30	1.4838	40.10		
	$_{0}r_{2}=09.08$	$_{0}PE_{2} = 01.20$	$\mu = 0.59 \pm$	0.01 D			
5. Decen-(1)			_				
	ε12		P ₂	n ₁₂	<i>P</i> _{E₂}		
0.00386	2.2823	0.8761	65.42	1.4897	62.71		
0.00641	2.2807	0.8753	58.61	1.4889	54.28		
0.0103	2.2788	0.8740	55.46	1.4883	52.09		
0.0171	2.2760	0.8719	53.25	1.4879	50.79		
0.0364	2.2673	0.8658	52.35	1.4838	48.97		
	$_{0}P_{2} = 76.62$	$_{0}P_{\rm E_{2}} = 70.84$	$\mu=0.42~\pm$	0.02 D			

1962

6. Undecen-(1)				
<i>x</i> ₂	e ₁₂	<i>d</i> ₁₂	P ₂	n ₁₂	PE2
0.00407	2.2819	0.8760	66.84	1.4895	62.28
0.00607	2.2809	0.8754	63.15	1.4892	59.45
0.00994	2.2789	0.8742	59.01	1.4882	55.37
0.0166	2.2758	0.8719	58.43	1.4870	54.17
0.0345	2.2685	0.8653	58.32	1.4836	53.71
	$_{0}P_{2} = 73.18$	= 73.18 $_{0}P_{E_{2}} = 66.25 \ \mu = 0.53 \pm 0.01 \ D$			
7. Dodecen-(1)				
<i>x</i> ₂	ε ₁₂	<i>d</i> ₁₂	P ₂	n ₁₂	PE2
0.00327	2.2837	0.8764	76.10	1.4894	65.35
0.00493	2.2831	0.8758	75.55	1.4891	62.44
0.0159	2.2775	0.8723	64.65	1.4866	57.69
0.0315	2.2705	0.8667	63.51	1.4834	57.01
0.0464	2.2641	0.8619	62.78	1.4810	57.23
	$_{0}P_{2} = 79.50$ $_{0}P_{E_{2}} = 72.58$ $\mu = 0.52 \pm 0.01$ D				
8. Hexadecer	n-(1)				
<i>x</i> ₂	£12	d ₁₂	P ₂	n ₁₂	PE2
0.00351	2.2817	0.8761	97.28	1.4893	84.20
0.00476	2.2816	0.8757	94.91	1.4891	80.12
0.0147	2.2778	0.8723	85.73	1.4868	76.78
0.0305	2.2674	0.8670	81.10	1.4840	76.40
0.0434	2.2601	0.8627	80.43	1.4813	75.77
	$_{0}P_{2} = 100.46$	$_{0}P_{\rm E_{2}} = 93.44$	$\mu = 0.51 \pm$	0.02 D	

DISKUSSION DER ERGEBNISSE

Wie aus den Meßergebnissen und insbesondere aus der nachstehenden Abbildung zu ersehen ist, alterniert der Wert des Dipolmomentes; die ungeradzahligen Olefine haben das größere und die geradzahligen das kleinere elektrische Moment. Mit zu-

Abhängigkeit der Dipolmomente der a-Olefine von der Kettenlänge

nehmender Kettenlänge wird jedoch ein gemeinsamer Grenzwert angestrebt, der oberhalb C_{10} schon nahezu erreicht ist. In diesem Zusammenhang sei vermerkt, daß die Dielektrizitätskonstanten der Paraffine zwischen C₆ und C₁₀ gleichfalls einen alter-

99

nierenden Effekt aufweisen und daß auch hier die Verbindungen mit ungerader C-Zahl die höheren DK-Werte besitzen. Bereits K. L. WOLF und W. J. GROSS¹⁰⁾ sowie H. L. DONLE¹¹ fanden an einer Reihe homologer Alkohole, Ketone und Ester eine alternierende Abhängigkeit des elektrischen Momentes von der Kettenlänge.

Der reale Charakter derartiger alternierender Effekte ist vielfach umstritten gewesen. Für die a-Olefine dürfte mit den vorliegenden Ergebnissen der Beweis dafür eindeutig erbracht sein, denn die Unterschiede zwischen zwei benachbarten Homologen, zumindest im niedrigmolekularen Bereich, liegen weit außerhalb der Fehlergrenze. Die tetraedrische Valenzanordnung des C-Atoms führt bei den aliphatischen geradkettigen Kohlenwasserstoffen zu der sogenannten "Zickzackstruktur". Die Größe und die Art des Alternierungseffektes sprechen dafür, daß diese nicht eben, sondern infolge der Rotationsmöglichkeiten schraubenförmig ist, wobei durchaus bevorzugte Stellungen möglich sind.

BESCHREIBUNG DER VERSUCHE

Darstellung der Olefine⁶⁾

Die für die Herstellung der Olefine benötigten Grignard-Verbindungen wurden in der üblichen Weise aus 2.2 Mol Alkylbromid, 2.4 Mol Magnesium und 1200 ccm absol. Ather unter sorgfältigem Ausschluß von Luft hergestellt. Den von nicht umgesetztem Magnesium dekantierten Lösungen ließ man dann unter Rühren 2 Mol Allylbromid bzw. Allylchlorid, gelöst in 400 ccm absol. Ather, innerhalb von 3 Stdn. zutropfen und hielt dabei die Reaktionstemperatur so, daß sich im Kühler gerade eben etwas Äther kondensierte. Nach Beendigung der Reaktion verblieb die Lösung noch 1 Stde. unter Rückfluß.

Das Reaktionsgemisch wurde, ohne anzusäuern, mit Eis zersetzt, die Olefine dreimal mit Äther extrahieit und nach Waschen mit Wasser über Na₂SO₄¹²⁾ getrocknet und nach Entfernen des Äthers unter vermindertem Druck über eine wirksame Füllkörperkolonne bei einem Rücklaufverhältnis von 1:100 fraktioniert. Das Vakuum war jedoch so eingestellt, daß das Olefin bei etwa 100°C überging. Die Fraktionen wurden in Mengen von 10 ccm abgenommen und durch Brechungsindex und IR-Spektrum auf Reinheit geprüft. β-Isomere konnten nicht festgestellt werden. Die reinen Olefine blieben bis zu ihrer Verwendung unter Lampenstickstoff auf bewahrt.

Reinigung der Lösungsmittel¹³⁾

Tetrachlorkohlenstoff: Handelsüblicher Tetrachlorkohlenstoff wurde in einer 60-cm-Füllkörperkolonne unter großem Rücklaufverhältnis fraktioniert, sodann 3-4 Tage in einer Umlaufapparatur¹⁴) über P₂O₅ getrocknet. Der so gereinigte Tetrachlorkohlenstoff wurde dann aus der Apparatur direkt in die Meßzelle des Dipolmeters destilliert und sofort der Eichmessung unterzogen.

Benzol: Benzol p. a. wurde mit 5 Gew.-% Aluminiumchlorid ca. 2 Stdn. unter Rückfluß gekocht, vom gebildeten Bodensatz abdestilliert, darauf mit 2 n Na₂CO₃ im Scheidetrichter durchgeschüttelt und nach Trocknung über CaCl2 über eine 60-cm-Füllkörperkolonne destilliert. Die mittlere, konstant siedende Fraktion (Sdp.736 79.2° C, n²⁰ 1.5014) wurde darauf erneut über Na-Draht destilliert. Das für die Eichmessung benutzte Benzol wurde vor der Verwendung nochmals gesondert in einer Umlaufapparatur über Kalium getrocknet.

¹¹⁾ Z. physik. Chem., Abt. B 14, 326 [1931].

 ¹⁰ Z. physik. Chem., Abt. B 14, 304 [1931].
¹¹ Z. physik. Chem., Abt. B 14, 326 [193
¹² M. L. SHERILL, K. E. MAYER und G. F. WALTER, J. Amer. chem. Soc. 56, 926 [1934].

¹³⁾ M. PESTEMER, Angew. Chem. 63, 109 [1951].

¹⁴⁾ P. L. SCHUPP und R. MECKE, Z. Elektrochem. angew. physik. Chem. 52, 54 [1948].

Toluol: Toluol p. a. wurde je dreimal mit konz. Schwefelsäure, anschließend mit 2 n KOH und Wasser gewaschen. Nach Trocknung über CaCl₂ wurde das Toluol wie die beiden anderen Lösungsmittel fraktioniert (Sdp. 760 110.5° C, n_D^{20} 1.4965) und im Anschluß daran in der Umlaufapparatur 3-4 Tage über Na-Draht getrocknet.

Bestimmung der Dielektrizitätskonstanten

Die Dielektrizitätskonstanten bestimmten wir mit dem Dipolmeter DM 01 nach SLEVOGT ¹⁵⁾ bei 20 \pm 0.05°C und einer Meßfrequenz von etwa 2 MHz. Das Gerät wurde mit hochgereinigtem Toluol, Benzol und Tetrachlorkohlenstoff geeicht und die Skalenwerte des Meßkondensators mit Hilfe dieser Fixpunkte durch lineare Interpolation bestimmt. Die zum Gerät gehörende Meßzelle DFL 01 von ca. 40 ccm Fassungsvermögen ist als Zylinderkondensator ausgebildet, sie wurde durch Thermostatenwasser auf $\pm 0.05^{\circ}$ C gehalten.

Bestimmung der Brechungsindices

Die Brechungsindices bei den verschiedenen Wellenlängen wurden mit einem PULFRICH-Refraktometer bei 20 \pm 0.1°C bestimmt.

Bestimmung der Dichten

Die Dichten der Benzollösungen im Konzentrationsbereich von 0.3 bis 5 Mol-% wurden pyknometrisch bestimmt. Vor jeder Wägung wurde die Probe 2-3 Stdn. auf $\pm 0.05^{\circ}$ C genau temperiert. Alle Werte sind auf den luftleeren Raum korrigiert und rechnerisch ausgeglichen.

15) Hersteller: Wissenschaftlich-Technische Werkstätten, Weilheim/Obb.
